If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-13y+26=0
a = 1; b = -13; c = +26;
Δ = b2-4ac
Δ = -132-4·1·26
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{65}}{2*1}=\frac{13-\sqrt{65}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{65}}{2*1}=\frac{13+\sqrt{65}}{2} $
| 12=3/10(x+2 | | 7y=49-7 | | x-164=4 | | X+4/3=1-x+5/7 | | 6c=7C+2 | | 4c=7C+2 | | 6x-2=6+5x | | 4x+9(9-x)=61 | | 2÷15x-1÷34÷5x+2=0 | | 38z+12,5=18z-27,5 | | X=3x+5=8 | | X=3x+5=13 | | 3m+5=2m+8 | | 4x-180=250 | | 0=18x-3x^2 | | 300=n(n-1) | | 5(6a)=0 | | 5(6a)=30 | | (2x+5)+(3x-20)=180 | | 4x-5=-3+2 | | 13x+6=10x-9 | | (2x-5)+(3x+20)=180 | | 28=4+3(x+5 | | -4(6+5x)=-164 | | 2(x-2)-x^2+4x-4=0 | | 6(5a+1)+4=190 | | 8(3-3x)=168 | | -167=-6(5p+7)+5p | | (2x-1)/6=4/3 | | 3l=4/6= | | x^2-19x-68=0 | | x^2+19x-68=0 |